582 research outputs found

    Constraints on the collimated X-ray emission of SS 433 from the reflection on molecular clouds

    Full text link
    We calculate X-ray signal that should arise due to reflection of the putative collimated X-ray emission of the Galactic supercritical accretor SS 433 on molecular clouds in its vicinity. The molecular gas distribution in the region of interest has been constructed based on the data of the BU-FCRAO GRS in 13^{13}CO J=10J=1\rightarrow0 emission line, while the collimated emission was assumed to be aligned with the direction of the relativistic jets, which are continuously launched by the system. We consider all the available ChandraChandra observations covering the regions possibly containing the reflection signal and put constraints on the apparent face-on luminosity of SS 433 above 4 keV. No signatures of the predicted signal have been found in the analysed regions down to a 4-8 keV surface brightness level of 1011\sim 10^{-11} erg/s/cm2^2/deg2^2. This translates into the limit on the apparent face-on 2-10 keV luminosity of SS 433 LX,2108×1038L_{X,2-10}\lesssim 8\times10^{38} erg/s, provided that the considered clouds do fall inside the illumination cone of the collimated emission. This, however, might not be the case due to persisting uncertainty in the line-of-sight distances to SS 433 dSS433d_{SS433} (4.5-5.5 kpc) and to the considered molecular clouds. For half-opening angle of the collimation cone larger than or comparable to the amplitude of the jets' precession (21deg\approx21\deg), the stringent upper limit quoted above is most relevant if dSS433<5d_{SS433}<5 kpc, provided that the kinematic distances to the considered molecular clouds are sufficiently accurate. Dropping the last assumption, a more conservative constraint is LX,2101040L_{X,2-10}\lesssim10^{40} erg/s for dSS433=4.654.85d_{SS433}=4.65-4.85 kpc (and yet worse outside this range). We conclude that SS 433 is not likely to belong to the brightest ultraluminous X-ray sources if it could be observed face-on, unless its X-ray emission is highly collimated. (Abridged)Comment: Astronomy Letters, in press; 16 pages, 8 figure

    Polarization and long-term variability of Sgr A* X-ray echo

    Get PDF
    We use a model of the molecular gas distribution within ~100 pc from the center of the Milky Way (Kruijssen, Dale & Longmore) to simulate time evolution and polarization properties of the reflected X-ray emission, associated with the past outbursts from Sgr A*. While this model is too simple to describe the complexity of the true gas distribution, it illustrates the importance and power of long-term observations of the reflected emission. We show that the variable part of X-ray emission observed by Chandra and XMM from prominent molecular clouds is well described by a pure reflection model, providing strong support of the reflection scenario. While the identification of Sgr A* as a primary source for this reflected emission is already a very appealing hypothesis, a decisive test of this model can be provided by future X-ray polarimetric observations, that will allow placing constraints on the location of the primary source. In addition, X-ray polarimeters (like, e.g., XIPE) have sufficient sensitivity to constrain the line-of-sight positions of molecular complexes, removing major uncertainty in the model.Comment: 17 pages, 10 figures, accepted for publication in MNRA

    Polarization of Sunyaev-Zeldovich signal due to electron pressure anisotropy in galaxy clusters

    Full text link
    We describe polarization of the Sunyaev-Zel'dovich (SZ) effect associated with electron pressure anisotropy likely present in the intracluster medium (ICM). The ICM is an astrophysical example of a weakly collisional plasma where the Larmor frequencies of charged particles greatly exceed their collision frequencies. This permits formation of pressure anisotropies, driven by evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ polarization arises in the process of Compton scattering of the cosmic microwave background (CMB) photons off the thermal ICM electrons due to the difference in the characteristic thermal velocities of the electrons along two mutually orthogonal directions in the sky plane. The signal scales linearly with the optical depth of the region containing large-scale correlated anisotropy, and with the degree of anisotropy itself. It has the same spectral dependence as the polarization induced by cluster motion with respect to the CMB frame (kinematic SZ effect polarization), but can be distinguished by its spatial pattern. { For the illustrative case of a galaxy cluster with a cold front, where electron transport is mediated by Coulomb collisions, we estimate the CMB polarization degree at the level of 108^{-8} (10\sim 10 nK). An increase of the effective electron collisionality due to plasma instabilities will reduce the effect. Such polarization, therefore, may be an independent probe of the electron collisionality in the ICM, which is one of the key properties of a high-β\beta weakly collisional plasma from the point of view of both astrophysics and plasma theory.Comment: 13 pages, 5 figures, accepted for publication in MNRA

    Can Sgr A* flares reveal the molecular gas density PDF?

    Get PDF
    Illumination of dense gas in the Central Molecular Zone (CMZ) by powerful X-ray flares from Sgr A* leads to prominent structures in the reflected emission that can be observed long after the end of the flare. By studying this emission we learn about past activity of the supermassive black hole in our Galactic Center and, at the same time, we obtain unique information on the structure of molecular clouds that is essentially impossible to get by other means. Here we discuss how X-ray data can improve our knowledge of both sides of the problem. Existing data already provide: i) an estimate of the flare age, ii) a model-independent lower limit on the luminosity of Sgr A* during the flare and iii) an estimate of the total emitted energy during Sgr A* flare. On the molecular clouds side, the data clearly show a voids-and-walls structure of the clouds and can provide an almost unbiased probe of the mass/density distribution of the molecular gas with the hydrogen column densities lower than few 1023  cm210^{23}\;{\rm cm^{-2}}. For instance, the probability distribution function of the gas density PDF(ρ)PDF(\rho) can be measured this way. Future high energy resolution X-ray missions will provide the information on the gas velocities, allowing, for example a reconstruction of the velocity field structure functions and cross-matching the X-ray and molecular data based on positions and velocities.Comment: 13 pages, 7 figures; Accepted for publication in MNRA

    Not that long time ago in the nearest galaxy: 3D slice of molecular gas revealed by a 110 years old flare of Sgr A*

    Get PDF
    A powerful outburst of X-ray radiation from the supermassive black hole Sgr A* at the center of the Milky Way is believed to be responsible for the illumination of molecular clouds in the central ~100 pc of the Galaxy (Sunyaev et al., 1993, Koyama et al., 1996). The reflected/reprocessed radiation comes to us with a delay corresponding to the light propagation time that depends on the 3D position of molecular clouds with respect to Sgr A*. We suggest a novel way of determining the age of the outburst and positions of the clouds by studying characteristic imprints left by the outburst in the spatial and time variations of the reflected emission. We estimated the age of the outburst that illuminates the Sgr A molecular complex to be ~110 yr. This estimate implies that we see the gas located ~10 pc further away from us than Sgr A*. If the Sgr B2 complex is also illuminated by the same outburst, then it is located ~130 pc closer than our Galactic Center. The outburst was short (less than a few years) and the total amount of emitted energy in X-rays is 1048ρ31\displaystyle \sim 10^{48}\rho_3^{-1} erg, where ρ3\rho_3 is the mean hydrogen density of the cloud complex in units of 103cm310^3 {\rm cm^{-3}}. Energetically, such fluence can be provided by a partial tidal disruption event or even by a capture of a planet. Further progress in more accurate positioning and timing of the outburst should be possible with future X-ray polarimetric observations and long-term systematic observations with Chandra and XMM-Newton. A few hundred-years long X-ray observations would provide a detailed 3D map of the gas density distribution in the central 100\sim 100 pc region.Comment: 10 pages, 7 figures, accepted for publication in MNRA

    An upper limit on nickel overabundance in the supercritical accretion disk wind of SS 433 from X-ray spectroscopy

    Full text link
    We take advantage of a long (with a total exposure time of 120 ks) X-ray observation of the unique Galactic microquasar SS 433, carried out with the XMM-Newton space observatory, to search for a fluorescent line of neutral (or weakly ionized) nickel at the energy 7.5 keV. We consider two models of the formation of fluorescent lines in the spectrum of SS 433: 1) due to reflection of hard X-ray radiation from a putative central source on the optically thick walls of the accretion disk "funnel"; and 2) due to scattering of the radiation coming from the hottest parts of the jets in the optically thin wind of the system. It is shown, that for these cases, the photon flux of Ni I Kα_{\alpha} fluorescent line is expected to be 0.45 of the flux of Fe I Kα_{\alpha} fluorescent line at 6.4 keV, for the relative nickel overabundance ZNi/Z=10Z_{Ni}/Z = 10, as observed in the jets of SS 433. For the continuum model without the absorption edge of neutral iron, we set a 90 per cent upper limit on the flux of the narrow Ni I Kα_{\alpha} line at the level of 0.9×1050.9 \times 10^{-5} ph s1^{-1} cm2^{-2}. For the continuum model with the absorption edge, the corresponding upper limit is 2.5×1052.5 \times 10^{-5} ph s1^{-1} cm2^{-2}. At the same time, for the Fe I Kα_{\alpha} line, we measure the flux of 9.98.411.2×1059.9_{8.4}^{11.2} \times 10^{-5} ph s1^{-1} cm2^{-2}. Taken at the face value, the results imply that the relative overabundance of nickel in the wind of the accretion disc should be at least 1.5 times less than the corresponding excess of nickel observed in the jets of SS 433.Comment: 17 pages, 12 figures, 4 tables, Astronomy Letters, in press, 2018, Volume 44, Issue

    Probing 3D Density and Velocity Fields of ISM in Centers of Galaxies with Future X-Ray Observations

    Get PDF
    Observations of bright and variable "reflected" X-ray emission from molecular clouds located within inner hundred parsec of our Galaxy have demonstrated that the central supermassive black hole, Sgr A*, experienced short and powerful flares in the past few hundred years. These flares offer a truly unique opportunity to determine 3D location of the illuminated clouds (with ~10 pc accuracy) and to reveal their internal structure (down to 0.1 pc scales). Short duration of the flare(s), combined with X-rays high penetration power and insensitivity of the reflection signal to thermo- and chemo-dynamical state of the gas, ensures that the provided diagnostics of the density and velocity fields is unbiased and almost free of the projection and opacity effects. Sharp and sensitive snapshots of molecular gas accessible with aid of future X-ray observatories featuring large collecting area and high angular (arcsec-level) and spectral (eV-level) resolution cryogenic bolometers will present invaluable information on properties of the supersonic turbulence inside the illuminated clouds, map their shear velocity field and allow cross-matching between X-ray data and velocity-resolved emission of various molecular species provided by ALMA and other ground-based facilities. This will highlight large and small-scale dynamics of the dense gas and help uncovering specifics of the ISM lifecycle and high-mass star formation under very extreme conditions of galactic centers. While the former is of particular importance for the SMBH feeding and triggering AGN feedback, the latter might be an excellent test case for star formation taking place in high-redshift galaxies.Comment: White paper submitted to the Astro2020 Decadal Surve

    Integrable boundary conditions for classical sine-Gordon theory

    Full text link
    The possible boundary conditions consistent with the integrability of the classical sine-Gordon equation are studied. A boundary value problem on the half-line x0x\leq 0 with local boundary condition at the origin is considered. The most general form of this boundary condition is found such that the problem be integrable. For the resulting system an infinite number of involutive integrals of motion exist. These integrals are calculated and one is identified as the Hamiltonian. The results found agree with some recent work of Ghoshal and Zamolodchikov.Comment: 10 pages, DTP/94-3

    Prospects of detecting soft X-ray emission from typical WHIM filaments around massive clusters and the Coma cluster soft excess

    Full text link
    While hot ICM in galaxy clusters makes these objects powerful X-ray sources, the cluster's outskirts and overdense gaseous filaments might give rise to much fainter sub-keV emission. Cosmological simulations show a prominent "focusing" effect of rich clusters on the space density of the Warm-Hot Intergalactic Medium (WHIM) filaments up to a distance of 10Mpc\sim 10\,{\rm Mpc} (\sim turnaround radius, rtar_{ta}) and beyond. Here, we use Magneticum simulations to characterize their properties in terms of integrated emission measure for a given temperature and overdensity cut and the level of contamination by the more dense gas. We suggest that the annuli (0.51)×rta(\sim 0.5-1)\times \,r_{ta} around massive clusters might be the most promising sites for the search of the gas with overdensity 50\lesssim 50. We model spectral signatures of the WHIM in the X-ray band and identify two distinct regimes for the gas at temperatures below and above 106K\sim 10^6\,{\rm K}. Using this model, we estimate the sensitivity of X-ray telescopes to the WHIM spectral signatures. We found that the WHIM structures are within reach of future high spectral resolution missions, provided that the low-density gas is not extremely metal-poor. We then consider the Coma cluster observed by SRG/eROSITA during the CalPV phase as an example of a nearby massive object. We found that beyond the central r40r\sim 40' (1100kpc\sim 1100\,{\rm kpc}) circle, where calibration uncertainties preclude clean separation of the extremely bright cluster emission from a possible softer component, the conservative upper limits are about an order of magnitude larger than the levels expected from simulations.Comment: Submitted to MNRA
    corecore